Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7213, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938215

RESUMO

The canonical studies on Mie scattering unravel strong electric/magnetic optical responses in nanostructures, laying foundation for emerging meta-photonic applications. Conventionally, the morphology-sensitive resonances hinge on the normalized frequency, i.e. particle size over wavelength, but non-paraxial incidence symmetry is overlooked. Here, through confocal reflection microscopy with a tight focus scanning over silicon nanostructures, the scattering point spread functions unveil distinctive spatial patterns featuring that linear scattering efficiency is maximal when the focus is misaligned. The underlying physical mechanism is the excitation of higher-order multipolar modes, not accessible by plane wave irradiation, via displacement resonance, which showcases a significant reduction of nonlinear response threshold, sign flip in all-optical switching, and spatial resolution enhancement. Our result fundamentally extends the century-old light scattering theory, and suggests new dimensions to tailor Mie resonances.

2.
Eur J Clin Nutr ; 77(12): 1113-1129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661229

RESUMO

BACKGROUND: There is still paucity on the effects of dietary and supplemental fatty acid on non-alcoholic fatty liver disease (NAFLD). The aim of this review is to systematically review and summarise the effect of fatty acids intake on liver-related outcomes in adult patients with NAFLD. METHODS: The review was conducted using Cochrane CENTRAL Library, Scopus, Embase, MEDLINE, PubMed, and Web of Science. A total of 2786 records were identified, and of these, 36 studies (31 were randomised control trials (RCTs), and 5 were case-control studies) were included. Quality assessment was conducted using the Revised Cochrane Risk of Bias tool and Joanna Briggs Institute checklists. RESULTS: Of 36 articles, 79% of RCTs and 66% of case-control studies had a low risk of bias. Potential heterogeneity has been observed in assessment of liver-related outcomes. According to the RCTs, there was moderate evidence (3/6 studies) that a diet characterised by a high MUFA, PUFA and low SFA showed reduced liver fat and stiffness. The using of culinary fats that are high in MUFA (4/6 studies) reduces liver steatosis. n-3 PUFA supplementation in combination with a hypocaloric or heart healthy diet with a low SFA improved liver enzyme level (5/14 studies) and steatosis score (3/14 studies). CONCLUSIONS: Effects on NAFLD parameters, including liver fat content (assessed via magnetic resonance imaging/spectroscopy), stiffness and steatosis score (assessed by ultrasonography), were primarily related to fatty acid composition independent of energy intake. Further investigation is needed to determine the mechanism of specific fatty acid on the accumulation of liver fat.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Ácidos Graxos , Estudos de Casos e Controles
3.
J Chem Phys ; 155(20): 204202, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852492

RESUMO

Silicon nanophotonics has attracted significant attention because of its unique optical properties such as efficient light confinement and low non-radiative loss. For practical applications such as all-optical switch, optical nonlinearity is a prerequisite, but the nonlinearity of silicon is intrinsically weak. Recently, we discovered a giant nonlinearity of scattering from a single silicon nanostructure by combining Mie resonance enhanced photo-thermal and thermo-optic effects. Since scattering and absorption are closely linked in Mie theory, we expect that absorption, as well as heating, of the silicon nanostructure shall exhibit similar nonlinear behaviors. In this work, we experimentally measure the temperature rise of a silicon nanoblock by in situ Raman spectroscopy, explicitly demonstrating the connection between nonlinear scattering and nonlinear heating. The results agree well with finite-element simulation based on the photo-thermo-optic effect, manifesting that the nonlinear effect is the coupled consequence of the red shift between scattering and absorption spectra. Our work not only unravels the nonlinear absorption in a silicon Mie-resonator but also offers a quantitative analytic model to better understand the complete photo-thermo-optic properties of silicon nanostructures, providing a new perspective toward practical silicon photonics applications.

5.
Nat Commun ; 11(1): 4101, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796839

RESUMO

Silicon photonics have attracted significant interest because of their potential in integrated photonics components and all-dielectric meta-optics elements. One major challenge is to achieve active control via strong photon-photon interactions, i.e. optical nonlinearity, which is intrinsically weak in silicon. To boost the nonlinear response, practical applications rely on resonant structures such as microring resonators or photonic crystals. Nevertheless, their typical footprints are larger than 10 µm. Here, we show that 100 nm silicon nano-resonators exhibit a giant photothermal nonlinearity, yielding 90% reversible and repeatable modulation from linear scattering response at low excitation intensities. The equivalent nonlinear index is five-orders larger compared with bulk, based on Mie resonance enhanced absorption and high-efficiency heating in thermally isolated nanostructures. Furthermore, the nanoscale thermal relaxation time reaches nanosecond. This large and fast nonlinearity leads to potential applications for GHz all-optical control at the nanoscale and super-resolution imaging of silicon.

6.
Nat Commun ; 11(1): 3027, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541692

RESUMO

Featured with a plethora of electric and magnetic Mie resonances, high index dielectric nanostructures offer a versatile platform to concentrate light-matter interactions at the nanoscale. By integrating unique features of far-field scattering control and near-field concentration from radiationless anapole states, here, we demonstrate a giant photothermal nonlinearity in single subwavelength-sized silicon nanodisks. The nanoscale energy concentration and consequent near-field enhancements mediated by the anapole mode yield a reversible nonlinear scattering with a large modulation depth and a broad dynamic range, unveiling a record-high nonlinear index change up to 0.5 at mild incident light intensities on the order of MW/cm2. The observed photothermal nonlinearity showcases three orders of magnitude enhancement compared with that of unstructured bulk silicon, as well as nearly one order of magnitude higher than that through the radiative electric dipolar mode. Such nonlinear scattering can empower distinctive point spread functions in confocal reflectance imaging, offering the potential for far-field localization of nanostructured Si with an accuracy approaching 40 nm. Our findings shed new light on active silicon photonics based on optical anapoles.

7.
J Adv Prosthodont ; 9(3): 152-158, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28680545

RESUMO

PURPOSE: The purpose of this study was to evaluate the influence of different coping thicknesses and veneer ceramic cooling rates on the failure load of zirconia-ceramic crowns. MATERIALS AND METHODS: Zirconia copings of two different thicknesses (0.5 mm or 1.5 mm; n=20 each) were fabricated from scanning 40 identical abutment models using a dental computer-aided design and computer-aided manufacturing system. Zirconia-ceramic crowns were completed by veneering feldspathic ceramics under different cooling rates (conventional or slow, n=20 each), resulting in 4 different groups (CONV05, SLOW05, CONV15, SLOW15; n=10 per group). Each crown was cemented on the abutment. 300,000 cycles of a 50-N load and thermocycling were applied on the crown, and then, a monotonic load was applied on each crown until failure. The mean failure loads were evaluated with two-way analysis of variance (P=.05). RESULTS: No cohesive or adhesive failure was observed after fatigue loading with thermocycling. Among the 4 groups, SLOW15 group (slow cooling and 1.5 mm chipping thickness) resulted in a significantly greater mean failure load than the other groups (P<.001). Coping fractures were only observed in SLOW15 group. CONCLUSION: The failure load of zirconia-ceramic crowns was significantly influenced by cooling rate as well as coping thickness. Under conventional cooling conditions, the mean failure load was not influenced by the coping thickness; however, under slow cooling conditions, the mean failure load was significantly influenced by the coping thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...